Maxwell's Equations =================== The Maxwell's equations are: .. math:: \partial_\alpha F^{\beta\alpha} = \mu_0 j^\beta \epsilon^{\alpha\beta\gamma\delta}\partial_\gamma F_{\alpha\beta} = 0 and the Lorentz force is: .. math:: {\d p_\alpha\over\d \tau} = q F_{\alpha\beta} u^\beta where: .. math:: j^\alpha = (c\rho, {\bf j}) F_{\alpha\beta} = \left(\begin{array}{cccc} 0 & {E_1\over c} & {E_2\over c} & {E_3\over c} \\ -{E_1\over c} & 0 & -B_3 & B_2 \\ -{E_2\over c} & B_3 & 0 & -B_1 \\ -{E_3\over c} & -B_2 & B_1 & 0 \\ \end{array}\right) This corresponds to: .. math:: \nabla\cdot{\bf E} = c^2\mu_0 \rho \nabla\times{\bf B} = \mu_0 {\bf j} + {1\over c^2}{\partial{\bf E} \over \partial t} \nabla\cdot{\bf B} = 0 \nabla\times{\bf E} = -{\partial{\bf B}\over\partial t} Four Potential -------------- The four potential is defined by: .. math:: A^\alpha = \left({\phi\over c}, {\bf A}\right) F_{\alpha\beta} = \partial_\alpha A_\beta - \partial_\beta A_\alpha this corresponds to: .. math:: {\bf E} = -\nabla\phi - {\partial {\bf A}\over\partial t} {\bf B} = \nabla\times{\bf A} The Maxwell's equations can then be written as (note that the two eq. without sources are automatically satisfied by the four potential): .. math:: \partial_\alpha F^{\beta\alpha} = \partial_\alpha (\partial^\beta A^\alpha - \partial^\alpha A^\beta) = -\partial_\alpha \partial^\alpha A^\beta = \mu_0 j^\beta where we have employed the Lorentz gauge $\partial_\alpha A^\alpha=0$. Semiconductor Device Physics ============================ In general, the task is to find the five quantities: .. math:: n({\bf x}, t), p({\bf x}, t), {\bf J}_n({\bf x}, t), {\bf J}_h({\bf x}, t), {\bf E}({\bf x}, t) where $n$ ($p$) is the electron (hole) concentration, ${\bf J}_n$ (${\bf J}_p$) is the electron (hole) current density, ${\bf E}$ is the electric field. And we have five equations that relate them. We start with the continuity equation: .. math:: \nabla\cdot{\bf J} +{\partial\rho\over\partial t} = 0 where the current density ${\bf J}$ is composed of electron and hole current densities: .. math:: {\bf J} = {\bf J}_n + {\bf J}_p and the charge density $\rho$ is composed of mobile (electrons and holes) and fixed charges (ionized donors and acceptors): .. math:: \rho = q(p-n+C) where $n$ and $p$ is the electron and hole concetration, $C$ is the net doping concetration ($C=p_D-n_A$ where $p_D$ is the concentration of ionized donors, charged positive, and $n_A$ is the concentration of ionized acceptors, charged negative) and $q$ is the electron charge (positive). We get: .. math:: \nabla\cdot{\bf J}_n + \nabla\cdot{\bf J}_p + q\left( {\partial p\over\partial t} -{\partial n\over\partial t} +{\partial C\over\partial t} \right) = 0 Assuming the fixed charges $C$ are time invariant, we get: .. math:: \nabla\cdot{\bf J}_n - q {\partial n\over\partial t} = -\left( \nabla\cdot{\bf J}_p + q{\partial p\over\partial t} \right) \equiv qR where $R$ is the net recombination rate for electrons and holes (a positive value means recombination, a negative value generation of carriers). We get the carrier continuity equations: .. math:: :label: continuity {\partial n\over\partial t} = -R + {1\over q} \nabla\cdot {\bf J}_n {\partial p\over\partial t} = -R - {1\over q} \nabla\cdot {\bf J}_p Then we need material relations that express how the current ${\bf J}$ is generated using ${\bf E}$ and $n$ and $p$. A drift-diffusion model is to assume a drift current ($q\mu_n n {\bf E}$) and a diffusion ($q D_n \nabla n$), which gives: .. math:: :label: drift {\bf J}_n = q\mu_n n {\bf E} + q D_n \nabla n {\bf J}_p = q\mu_p p {\bf E} - q D_p \nabla p where $\mu_n$, $\mu_p$, $D_n$, $D_p$ are the carrier mobilities and diffusivities. Final equation is the Gauss's law: .. math:: \nabla\cdot (\varepsilon{\bf E}) = \rho .. math:: :label: gauss \nabla\cdot(\varepsilon {\bf E}) = q(p-n + C) Equations --------- Combining :eq:`drift` and :eq:`continuity` we get the following three equations for three unknowns $n$, $p$ and ${\bf E}$: .. math:: {\partial n\over\partial t} = -R + \nabla\cdot (\mu_n n {\bf E}) +\nabla\cdot (D_n \nabla n) {\partial p\over\partial t} = -R - \nabla\cdot (\mu_p p {\bf E}) +\nabla\cdot (D_p \nabla p) \nabla\cdot(\varepsilon {\bf E}) = q(p-n + C) And it is usually assumed that the magnetic field is time independent, so ${\bf E}=-\nabla\phi$ and we get: .. math:: :label: semicond-eq {\partial n\over\partial t} = -R - \nabla\cdot (\mu_n n \nabla\phi) +\nabla\cdot (D_n \nabla n) {\partial p\over\partial t} = -R + \nabla\cdot (\mu_p p \nabla\phi) +\nabla\cdot (D_p \nabla p) \nabla\cdot(\varepsilon \nabla\phi) = -q(p-n + C) These are three nonlinear (due to the terms $\mu_n n \nabla\phi$ and $\mu_p p \nabla\phi$) equations for three unknown functions $n$, $p$ and $\phi$. Example 1 ~~~~~~~~~ We can substract the first two equations and we get: .. math:: {\partial q(p-n)\over\partial t} = - q\nabla\cdot ((\mu_p p+\mu_n n){\bf E}) +q\nabla\cdot(D_p \nabla p-D_n\nabla n) \nabla\cdot(\varepsilon {\bf E}) = q(p-n+C) and using $\rho=q(p-n+C)$ and $\sigma=q(\mu_p p+\mu_n n)$, we get: .. math:: {\partial \rho\over\partial t} -q{\partial C\over\partial t} = - \nabla\cdot (\sigma {\bf E}) +q\nabla\cdot(D_p \nabla p-D_n\nabla n) \nabla\cdot(\varepsilon {\bf E}) = \rho So far we didn't make any assumptions. Most of the times the net doping concetration $C$ is time independent, which gives: .. math:: {\partial \rho\over\partial t} = - \nabla\cdot (\sigma {\bf E}) +q\nabla\cdot(D_p \nabla p-D_n\nabla n) \nabla\cdot(\varepsilon {\bf E}) = \rho Assuming further $D_p \nabla p-D_n\nabla n=0$, we just get the equation of continuity and the Gauss law: .. math:: {\partial \rho\over\partial t} + \nabla\cdot (\sigma {\bf E}) = 0 \nabla\cdot(\varepsilon {\bf E}) = \rho Finally, assuming also that that $\rho$ doesn't depend on time, we get: .. math:: \nabla\cdot (\sigma {\bf E}) = 0 \nabla\cdot(\varepsilon {\bf E}) = \rho Example 2 ~~~~~~~~~ As a simple model, assume $D_n$, $D_p$, $\mu_n$, $\mu_p$ and $\varepsilon$ are position independent and $C=0$, $R=0$: .. math:: {\partial n\over\partial t} = +\mu_n n \nabla\cdot {\bf E} +\mu_n {\bf E}\cdot\nabla n +D_n \nabla^2 n {\partial p\over\partial t} = -\mu_p p \nabla\cdot {\bf E} -\mu_p {\bf E}\cdot\nabla p +D_p \nabla^2 p \varepsilon\nabla\cdot {\bf E} = q(p-n) Using ${\bf E} = -\nabla \phi$ we get: .. math:: {\partial n\over\partial t} = -\mu_n n \nabla^2\phi -\mu_n \nabla\phi\cdot\nabla n +D_n \nabla^2 n {\partial p\over\partial t} = +\mu_p p \nabla^2\phi +\mu_p \nabla\phi\cdot\nabla p +D_p \nabla^2 p \varepsilon\nabla^2\phi = -q(p-n) Example 3 --------- Let's calculate the 1D pn-junction. We take the equations :eq:`semicond-eq` and write them in 1D for the stationary state (${\partial n\over\partial t}={\partial p\over\partial t}=0$): .. math:: 0 = -R - (\mu_n n \phi')' + (D_n n')' 0 = -R + (\mu_p p \phi')' + (D_p p')' (\varepsilon \phi')' = -q(p-n + C) We expand the derivatives and assume that $\mu$ and $D$ is constant: .. math:: 0 = -R - \mu_n n' \phi' - \mu_n n \phi'' + D_n n'' 0 = -R + \mu_p p' \phi' + \mu_p p \phi'' + D_p p'' \varepsilon \phi'' = -q(p-n + C) and we put the second derivatives on the left hand side: .. math:: :label: 1d-pn-junction1 n'' = {1\over D_n}(R + \mu_n n' \phi' + \mu_n n \phi'') p'' = {1\over D_p}(R - \mu_p p' \phi' - \mu_p p \phi'') \phi'' = -{q\over\varepsilon} (p-n + C) now we introduce the variables $y_i$: .. math:: y_0 = n y_1 = y_0' = n' y_2 = p y_3 = y_2' = p' y_4 = \phi y_5 = y_4' = \phi' and rewrite :eq:`1d-pn-junction1`: .. math:: y_1' = {1\over D_n}(R + \mu_n y_1 y_5 + \mu_n y_0 y_5') y_3' = {1\over D_p}(R - \mu_p y_3 y_5 - \mu_p y_2 y_5') y_5' = -{q\over\varepsilon} (y_2-y_0 + C) So we are solving the following six nonlinear first order ODE: .. math:: :label: 1d-pn-junction2 y_5' = -{q\over\varepsilon} (y_2-y_0 + C) y_0' = y_1 y_1' = {1\over D_n}(R + \mu_n y_1 y_5 + \mu_n y_0 y_5') y_2' = y_3 y_3' = {1\over D_p}(R - \mu_p y_3 y_5 - \mu_p y_2 y_5') y_4' = y_5