Radial Schrödinger and Dirac Equations ====================================== Variational Formulation of the Schrödinger equation --------------------------------------------------- Lagrangian is: .. math:: \L(\psi) = \half (\nabla \psi)^2 + V(x) \psi^2(x) Subject to the normalization constrain: .. math:: N[\psi] = \int|\psi(x)|^2 \d^3 x - 1 = 0 The action is: .. math:: S[\psi] = \int \L \d^3 x Variating it (subject to the normalization condition) we get: .. math:: 0 = \delta (S - \epsilon N) = \delta\int\half (\nabla \psi)^2 + V(x) \psi^2(x) \d^3x - \epsilon \left(\int|\psi(x)|^2 \d^3 x - 1\right) = = \int (\nabla \psi)\cdot(\nabla\delta\psi) + 2 V \psi \delta \psi -2\epsilon\psi\delta\psi\d^3 x = 2\int \left(-\half\nabla^2 \psi + V \psi - \epsilon\psi\right) \delta \psi \d^3 x + \int ({\bf n}\cdot\nabla\psi) \delta \psi\, \d^2 x Which gives the Schrödinger equation assuming the surface integral vanishes. Note: to apply the variation $\delta$ correctly, one uses the definition: .. math:: \delta F[\psi] \equiv \left.{\d\over\d\epsilon}F[\psi + \epsilon \delta\psi] \right|_{\epsilon=0} Weak Formulation ~~~~~~~~~~~~~~~~ The weak formulation is obtained from the above by substituting $\delta\psi \to v$ (the test function) so we get: .. math:: \int \half(\nabla \psi)\cdot(\nabla v) + V \psi v - \epsilon\psi v\,\d^3 x Radial Schrödinger equation --------------------------- There are two ways to obtain the radial Schrödinger equation. Either from the Lagrangian, or from the equation itself. From the Equation ~~~~~~~~~~~~~~~~~ .. math:: -{1\over2}\nabla^2\psi({\bf x})+V(r)\psi({\bf x})=E\psi({\bf x}) The way to solve it is to separate the equation into radial and angular parts by writing the Laplace operator in spherical coordinates as: .. math:: \nabla^2f = {\partial^2 f\over\partial\rho^2} +{2\over \rho}{\partial f\over\partial\rho} -{L^2 f\over \rho^2} .. math:: L^2= -{\partial^2\over\partial\theta^2} -{1\over\sin^2\theta}{\partial^2\over\partial\phi^2} -{1\over\tan\theta}{\partial\over\partial\theta} Substituting $\psi({\bf x})=R(\rho)Y(\theta,\phi)$ into the Schrödinger equation yields: .. math:: -{1\over2}\nabla^2(RY)+VRY=ERY .. math:: -{1\over2}R''Y-{1\over\rho}R'Y+{L^2RY\over2\rho^2}+VRY=ERY Using the fact that $L^2Y=l(l+1)Y$ we can cancel $Y$ and we get the radial Schrödinger equation: .. math:: -{1\over2}R''-{1\over\rho}R'+{l(l+1)R\over2\rho^2}+VR=ER Normalization: .. math:: 1 = \int |\psi|^2 \d^3 x = \int R^2 |Y|^2 \d^3 x = \int R^2 |Y|^2 \rho^2\d\Omega\d \rho = \int R^2 \rho^2 \d\rho \int |Y|^2 \d\Omega = \int R^2 \rho^2 \d \rho From the Lagrangian ~~~~~~~~~~~~~~~~~~~ We need to convert the Lagrangian to spherical coordinates. In order to easily make sure we do things covariantly, we start from the action (which is a scalar): .. math:: S[\psi] = \int \half (\nabla \psi)^2 + V(x) \psi^2(x) \, \d^3 x = = \int (\half (\nabla (RY))^2 + V (RY)^2 )\rho^2\d \rho \d\Omega = = \int (\half (R'^2Y^2 + R^2(\nabla Y)^2 + 2RR'({\bf\hat\rho}Y)\cdot\nabla Y) + V (RY)^2 )\rho^2\d \rho \d\Omega = = \int \left(\half \left(R'^2 + R^2{l(l+1)\over\rho^2}\right) + V R^2\right)\rho^2\d \rho = = \int \half \rho^2 R'^2 + (\rho^2 V + \half l(l+1)) R^2\,\d \rho\,, where we used the following properties of spherical harmonics: .. math:: \int Y^2\d\Omega = 1 \int \rho^2 (\nabla Y)^2\d\Omega = l(l+1) (Y{\bf \hat \rho})\cdot(\rho \nabla Y) = 0 We now minimize the action (subject to the normalization $\int \rho^2 R^2\d\rho = 1$) to obtain the radial equation: .. math:: 0 = \delta (S - \epsilon N) = \delta \int \half \rho^2 R'^2 + (\rho^2 V + \half l(l+1)) R^2 - \epsilon \rho^2R^2 \,\d \rho = = 2\int \half \rho^2 R'(\delta R)' + (\rho^2 V + \half l(l+1)) R\delta R - \epsilon \rho^2 R\delta R \,\d \rho = = 2\int \left( (-\half \rho^2 R')' + (\rho^2 V + \half l(l+1)) R - \epsilon \rho^2 R\right)\delta R \,\d \rho + [\rho^2 R' \delta R]^a_b So the radial equation is: .. math:: :label: radial2 (-\half \rho^2 R')' + (\rho^2 V + \half l(l+1)) R = \epsilon \rho^2 R In agreement with the previous result. Solving for u=rR ~~~~~~~~~~~~~~~~ We can also make the substitution $u = rR$ and solve for $u$: .. math:: R = {u\over r} R' = {u'\over r} - {u\over r^2} and we substitute this to :eq:`radial2`: .. math:: -\half \left(r^2\left({u'\over r} - {u\over r^2}\right)\right)'+ \left(V + {l(l+1)\over 2 r^2}\right) r u = \epsilon r u -\half ru''+ \left(V + {l(l+1)\over 2 r^2}\right) r u = \epsilon r u -\half u''+ \left(V + {l(l+1)\over 2 r^2}\right) u = \epsilon u Perturbative Correction to Energy ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We introduce $P$ and $Q$ by $P(r) = u(r)$ and $Q(r) = P'(r) = u'(r)$. The radial Schrödinger equation is then: .. math:: P'(r) = Q(r) Q'(r) = -2\left(E - V(r) - {l(l+1)\over 2 r^2}\right)P(r) Let $P_1$ and $Q_1$ represent the radial wave function and its derivative at $E_1$ and $P_2$, $Q_2$ at $E_2$, so the following holds: .. math:: Q_1'(r) = -2\left(E_1 - V(r) - {l(l+1)\over 2 r^2}\right)P_1(r) Q_2'(r) = -2\left(E_2 - V(r) - {l(l+1)\over 2 r^2}\right)P_2(r) Now we evaluate $(Q_2 P_1 - P_2 Q_1)'$ using the relations above: .. math:: (Q_2 P_1 - P_2 Q_1)' = Q_2' P_1 + Q_2 P_1' - P_2'Q_1 - P_2 Q_1' = Q_2' P_1 + Q_2 Q_1' - Q_2'Q_1 - P_2 Q_1' = Q_2' P_1 - P_2 Q_1' = 2 (E_1 - E_2) P_1 P_2 We integrate the last formula on the intervals $(0, a_c)$ and $(a_c, \infty)$: .. math:: [Q_2 P_1 - P_2 Q_1]^{a_c}_0 = 2 (E_1 - E_2) \int^{a_c}_0 P_1(r) P_2(r) \,\d r [Q_2 P_1 - P_2 Q_1]^\infty_{a_c} = 2 (E_1 - E_2) \int^\infty_{a_c} P_1(r) P_2(r) \,\d r On the interval $(0, a_c)$ we know the exact solution corresponding to the energies $E_1$ and $E_2$ by integrating outwards (the solution will eventually diverge for large $r$ except for the eigenvalues, but we only need it up to $a_c$) and we know that $P_1(0) = P_2(0) = 0$, so we get: .. math:: Q_2(a_c^-) P_1(a_c^-) - P_2(a_c^-) Q_1(a_c^-) = 2 (E_1 - E_2) \int^{a_c}_0 P_1(r) P_2(r) \,\d r where $a_c^-$ means that we need the values at $a_c$ when integrating the equation from the left (the value will generally be different when integrating the equation from the right, unless the energy is an eigenvalue). Similarly on the other interval where $P_1(\infty) = P_2(\infty)=0$: .. math:: -(Q_2(a_c^+) P_1(a_c^+) - P_2(a_c^+) Q_1(a_c^+)) = 2 (E_1 - E_2) \int^\infty_{a_c} P_1(r) P_2(r) \,\d r Taking the sum of the last two expressions: .. math:: 2 (E_1 - E_2) \int^\infty_0 P_1(r) P_2(r) \,\d r = Q_2(a_c^-) P_1(a_c^-) - P_2(a_c^-) Q_1(a_c^-) -(Q_2(a_c^+) P_1(a_c^+) - P_2(a_c^+) Q_1(a_c^+)) Now we use the fact that $P_1(a_c^-) = P_1(a_c^+)$ and $P_2(a_c^-) = P_2(a_c^+)$, because we match the two solutions from the left and right, so that the function is continuous (it's derivative will have a jump though): .. math:: 2 (E_1 - E_2) \int^\infty_0 P_1(r) P_2(r) \,\d r = P_1(a_c) (Q_2(a_c^-)-Q_2(a_c^+)) - P_2(a_c)(Q_1(a_c^-)-Q_1(a_c^+)) By requiring, that the energy $E_2$ is an eigenvalue, it follows that there is no jump in the derivative, so we set $Q_2(a_c^-)=Q_2(a_c^+)$ and we get: .. math:: 2 (E_1 - E_2) \int^\infty_0 P_1(r) P_2(r) \,\d r = -P_2(a_c)(Q_1(a_c^-)-Q_1(a_c^+)) that gives us an exact formula for the eigenvalue $E_2$: .. math:: E_2 = E_1 + {P_2(a_c)(Q_1(a_c^-)-Q_1(a_c^+))\over 2\int^\infty_0 P_1(r) P_2(r) \,\d r} We approximate the value of $P_2(a_c)$ by $P_1(a_c)$ as well as the integral $\int^\infty_0 P_1(r) P_2(r) \,\d r$ by $\int^\infty_0 P_1^2(r) \,\d r$ and we get an approximation for the eigenenergy: .. math:: E_2 \approx E_1 + {P_1(a_c)(Q_1(a_c^-)-Q_1(a_c^+))\over 2\int^\infty_0 P_1^2(r) \,\d r} We use this approximation iteratively until the convergence is achieved (the discontinuity in $Q(r)$ at $r=a_c$ is small enough, or equivalently, the correction to the energy is small enough). For Dirac equation, one obtains a similar formula: .. math:: E_2 \approx E_1 + c {P_1(a_c)(Q_1(a_c^-)-Q_1(a_c^+))\over \int^\infty_0 P_1^2(r) +Q_1^2(r) \,\d r} So it is just the previous formula multiplied by $2c$ and the normalization is calculated using both $P$ and $Q$ (as usual for the Dirac equation). Weak Formulation ~~~~~~~~~~~~~~~~ The weak formulation is obtained from the action above by substituting $\delta R \to v$ (the test function) so we get: .. math:: \int \half \rho^2 R'v' + (\rho^2 V + \half l(l+1)) Rv\,\d\rho = \epsilon \int \rho^2 Rv \,\d \rho We can also start from the equation itself, multiply by a test function $v$: .. math:: (-\half \rho^2 R')'v + (\rho^2 V + \half l(l+1)) Rv = \epsilon \rho^2 Rv We integrate it. Normally we need to be using $\rho^2\d\rho$ in order to integrate covariantly, but the above equation was already multiplied by $\rho^2$ (i.e. strictly speaking, it is not coordinate independent anymore), so we only integrate by $\d\rho$: .. math:: \int (-\half \rho^2 R')'v + (\rho^2 V + \half l(l+1)) Rv \d\rho = \epsilon \int \rho^2 Rv \d\rho After integration by parts: .. math:: \int \half \rho^2 R'v' + (\rho^2 V + \half l(l+1)) Rv \d\rho -\half[\rho^2R'v]_0^a = \epsilon \int \rho^2 Rv \d\rho Where $a$ is the end of the domain (the origin is at $0$). The boundary term is zero at the origin, so we get: .. math:: \int \half \rho^2 R'v' + (\rho^2 V + \half l(l+1)) Rv \d\rho +\half\rho^2R'(a)v(a) = \epsilon \int \rho^2 Rv \d\rho We usually want to have the boundary term $\half\rho^2R'(a)v(a)$ equal to zero. This is equivalent to either letting $R'(a) = 0$ (we prescribe the zero derivative of the radial wave function at $a$) or we set $v(a)=0$ (which corresponds to zero Dirichlet condition for $R$, i.e. setting $R(a)=0$). Weak Formulation for u ^^^^^^^^^^^^^^^^^^^^^^ .. math:: \int \half u'v' + \left(V + {l(l+1)\over 2\rho^2}\right) uv \,\d\rho -\half\left[u'v\right]_0^R = \epsilon \int uv \,\d\rho We prescribe $u(0) = u(R) = 0$, so we get: .. math:: \int \half u'v' + \left(V + {l(l+1)\over 2\rho^2}\right) uv \,\d\rho = \epsilon \int uv \,\d\rho Dirac Notation ^^^^^^^^^^^^^^ We can also write all the formulas using the Dirac notation: .. math:: \one = \int \d\rho \rho^2 \ket{\rho}\bra{\rho} \braket{\rho|\rho'} = {\delta(\rho-\rho')\over \rho^2} \braket{\rho|R} = R(\rho) \braket{\rho|\hat H|R} = {1\over\rho^2}(-\half \rho^2 R')' + (V + \half {l(l+1)\over\rho^2}) R \hat H \ket{R} = E\ket{R} Then normalization is: .. math:: \braket{R|R} = \int \d\rho \rho^2 \braket{R|\rho}\braket{\rho|R} = \int \d\rho \rho^2 R^2(\rho) The operator $\hat H$ can be written as: .. math:: \braket{\rho|\hat H|\rho'} = \braket{\rho|\rho'}\left( -\half{1\over\rho^2}{\d\over\d\rho}\left(\rho^2{\d\over\d\rho}\right) + (V + \half {l(l+1)\over\rho^2}) \right) so to recover the above formula, we do: .. math:: \braket{\rho|\hat H| R} = \int\d\rho'\rho'^2\braket{\rho|\hat H|\rho'} \braket{\rho'|R}= =\int\d\rho'\rho'^2 {\delta(\rho-\rho')\over \rho^2} \left( -\half{1\over\rho^2}{\d\over\d\rho}\left(\rho^2{\d\over\d\rho}\right) + (V + \half {l(l+1)\over\rho^2}) \right) R(\rho') = {1\over\rho^2}(-\half \rho^2 R')' + (V + \half {l(l+1)\over\rho^2}) R Operator $\hat H$ is symmetric, because: .. math:: \int f{1\over\rho^2}(\rho^2 g')' \rho^2\d\rho = \int {1\over\rho^2}(\rho^2 f')'g \rho^2\d\rho The weak formulation is: .. math:: \braket{v|H|R} = E\braket{v|R} \int\d\rho\rho^2 \braket{v|\rho}\braket{\rho|H|R} = E \int\d\rho\rho^2\braket{v|\rho}\braket{\rho|R} \int\d\rho\rho^2 v(\rho)\left( {1\over\rho^2}(-\half \rho^2 R')' + (V + \half {l(l+1)\over\rho^2}) R \right) = E \int\d\rho\rho^2v(\rho)R(\rho) and we obtain the FE formulation by expanding $\ket{R} =\sum_j R_j \ket{j}$ (note that the basis $\ket{j}$ is not orthogonal, so in particular $\sum_j \ket{j}\bra{j} \neq 1$): .. math:: \sum_j\braket{i|H|j}R_j = E\sum_j\braket{i|j}R_j This is a generalized eigenvalue problem. In the special case of an orthonormal basis, $\braket{i|j} = \delta_{ij}$ (which FE is not), we get: .. math:: \sum_j\braket{i|H|j}R_j = R_i R_i = \braket{i|R} Which is an eigenvalue problem. Variational Formulation of the Dirac equation --------------------------------------------- The QED Lagrangian density is .. math:: \L=\bar\psi(i\hbar c\gamma^\mu D_\mu-mc^2)\psi-{1\over4}F_{\mu\nu}F^{\mu\nu} where: .. math:: D_\mu=\partial_\mu+{i\over \hbar}eA_\mu F_{\mu\nu}=\partial_\mu A_\nu-\partial_\nu A_\mu We will treat the fields as classical fields, so we get the classical wave Dirac equation, after plugging this Lagrangian into the Euler-Lagrange equation of motion: .. math:: (i\hbar c\gamma^\mu D_\mu-mc^2)\psi=0 \partial_\nu F^{\nu\mu}=-ec\bar\psi\gamma^\mu\psi Notice that the Lagrangian happens to be zero for the solution of Dirac equation (e.g. the extremum of the action). This has nothing to do with the variational principle itself, it's just a coincindence. In this section we are only interested in the Dirac equation, so we write the Lagrangian as: .. math:: \L=\bar\psi(i\hbar c\gamma^\mu D_\mu-mc^2)\psi = =\psi^\dag\gamma^0(i\hbar c\gamma^\mu D_\mu-mc^2)\psi= =\psi^\dag\gamma^0(i\hbar c\gamma^0(\partial_0+{i\over\hbar}eA_0)+ic\gamma^i (\partial_i+{i\over\hbar}eA_i)-mc^2)\psi= =\psi^\dag(i\hbar c\partial_0+i\hbar c\gamma^0\gamma^i\partial_i-\gamma^0mc^2-ceA_0 -ce\gamma^0\gamma^iA_i)\psi= =\psi^\dag(i\hbar{\partial\over\partial t}+c\alpha^i p_i-\beta mc^2-ceA_0-ce\alpha^iA_i)\psi= =-\psi^\dag(-i\hbar{\partial\over\partial t}+c\alpha^i (-p_i+eA_i)+\beta mc^2+ceA_0)\psi= =-\psi^\dag(-i\hbar{\partial\over\partial t}+c{\boldsymbol\alpha}\cdot({\bf p}-e{\bf A})+\beta mc^2+V)\psi where we introduced the potential by $V = c e A_0$. We also could have done the same manipulation to the dirac equation itself and we would get the same expression: .. math:: (-i\hbar{\partial\over\partial t}+c{\boldsymbol\alpha}\cdot({\bf p}-e{\bf A})+\beta mc^2+V)\psi = 0 The corresponding eigenvalue problem is: .. math:: (c{\boldsymbol\alpha}\cdot({\bf p}-e{\bf A})+\beta mc^2+V)\psi = W\psi Radial Dirac equation --------------------- As for the Schrödinger equation, there are two ways to obtain the radial Dirac equation. Either from the Lagrangian, or from the equation itself. From the Equation ~~~~~~~~~~~~~~~~~ The manipulations are well known, one starts by writing the Dirac spinors using the spin angular functions and radial components $P$ and $Q$: .. math:: \psi = \left(\begin{array}{c}{P\over\rho}\chi^{j_3}_\kappa\\ i{Q\over\rho}\chi^{j_3}_{-\kappa}\end{array}\right) \psi^\dag = \left(\begin{array}{cc}{P\over\rho}\chi^{j_3}_\kappa & -i{Q\over\rho}\chi^{j_3}_{-\kappa}\end{array}\right) and putting this into the Dirac equation one obtains: .. math:: \left(\begin{array}{cc} \left(-\hbar c \left({\d\over\d\rho} - {\kappa\over\rho}\right)Q + (V+mc^2-W)P\right) & 0\\ 0 & \left(\hbar c \left({\d\over\d\rho} + {\kappa\over\rho}\right)P + (V-mc^2-W)Q\right) \end{array}\right) \left( \begin{array}{c} {1\over \rho}\chi^{j_3}_\kappa \\ i{1\over\rho}\chi^{j_3}_{-\kappa} \end{array} \right) =0 So one obtains the following radial equations: .. math:: -\hbar c \left({\d\over\d\rho} - {\kappa\over\rho}\right)Q + (V+mc^2-W)P=0 \hbar c \left({\d\over\d\rho} + {\kappa\over\rho}\right)P + (V-mc^2-W)Q=0 From the Lagrangian ~~~~~~~~~~~~~~~~~~~ We can reuse the calculations from the previous sections, because the Lagrangian happens to be zero for the solution of the Dirac equation: .. math:: \L=\bar\psi(i\hbar c\gamma^\mu D_\mu-mc^2)\psi = =-\psi^\dag(-i\hbar{\partial\over\partial t}+c{\boldsymbol\alpha}\cdot({\bf p}-e{\bf A})+\beta mc^2+V)\psi= = \left(\begin{array}{cc}{P\over\rho}\chi^{j_3}_\kappa & -i{Q\over\rho}\chi^{j_3}_{-\kappa}\end{array}\right) \left(\begin{array}{cc} \left(-\hbar c \left({\d\over\d\rho} - {\kappa\over\rho}\right)Q + (V+mc^2)P\right) & 0\\ 0 & \left(\hbar c \left({\d\over\d\rho} + {\kappa\over\rho}\right)P + (V-mc^2)Q\right) \end{array}\right) \left( \begin{array}{c} {1\over \rho}\chi^{j_3}_\kappa \\ i{1\over\rho}\chi^{j_3}_{-\kappa} \end{array} \right) = = {1\over\rho^2} P \left(-\hbar c \left({\d\over\d\rho} - {\kappa\over\rho}\right)Q + (V+mc^2)P\right) \chi^{j_3}_\kappa\chi^{j_3}_\kappa + {1\over\rho^2} Q \left(\hbar c \left({\d\over\d\rho} + {\kappa\over\rho}\right)P + (V-mc^2)Q\right) \chi^{j_3}_{-\kappa}\chi^{j_3}_{-\kappa} We can now write the action: .. math:: S = \int \L \,\rho^2 \,\d\rho\d\Omega the spin angular functions integrate to $1$: .. math:: \int \chi^{j_3}_\kappa\chi^{j_3}_\kappa \d\Omega = 1 \int \chi^{j_3}_{-\kappa}\chi^{j_3}_{-\kappa} \d\Omega = 1 the $\rho^2$ cancels out and we get: .. math:: S[P, Q] = \int P \left(-\hbar c \left({\d\over\d\rho} - {\kappa\over\rho}\right)Q + (V+mc^2)P\right) + Q \left(\hbar c \left({\d\over\d\rho} + {\kappa\over\rho}\right)P + (V-mc^2)Q\right) \,\d\rho= =\int -\hbar c(PQ' - QP') + \hbar c {2\kappa\over\rho} PQ + V(P^2+Q^2) + m c^2 (P^2 - Q^2) \d\rho the normalization condition is: .. math:: N = \int P^2 + Q^2 \d\rho - 1 = 0 and we can variate the action, we also shift the energy $W=\epsilon + mc^2$: .. math:: 0 = \delta (S - W N) = \delta (S - \epsilon N - mc^2N) which effectively adds $-mc^2(P^2+Q^2)$ into the Lagrangian, which changes the term $mc^2(P^2 - Q^2)$ into $-2mc^2 Q^2$. We can now variate the (constrained) action: .. math:: 0=\delta\int -\hbar c(PQ' - QP') + \hbar c {2\kappa\over\rho} PQ + V(P^2+Q^2) - 2m c^2 Q^2 \d\rho= = 2\int \left(-\hbar c((\delta P)Q' - P'\delta Q) + \hbar c{\kappa\over\rho} ((\delta P)Q + P\delta Q)) + (P\delta P + Q\delta Q)V -2mc^2Q\delta Q - \epsilon(P\delta P + Q\delta Q)\right)\d\rho +[P\delta Q - Q\delta P]^R_0 = = 2\int \delta P \left(-\hbar c Q' + \hbar c{\kappa\over\rho}Q + PV - \epsilon P \right)+ \delta Q \left(\hbar c P' + \hbar c{\kappa\over\rho}P + QV - 2mc^2Q - \epsilon Q \right)\d\rho +[P\delta Q - Q\delta P]^R_0 = which gives the two radial equations: .. math:: -\hbar c Q' + \hbar c{\kappa\over\rho}Q + PV = \epsilon P \hbar c P' + \hbar c{\kappa\over\rho}P + QV - 2mc^2Q = \epsilon Q Weak Formulation ~~~~~~~~~~~~~~~~ The weak formulation can be obtained by substituting $\delta P \to v_1$ and $\delta Q\to v_2$ into the action above (and separating the integrals) and omitting the the boundary term: .. math:: \int -\hbar c Q'v_1 + \hbar c{\kappa\over\rho}Qv_1 + PVv_1\d\rho = \epsilon \int Pv_1 \d\rho \int \hbar c P'v_2 + \hbar c{\kappa\over\rho}Pv_2 + QVv_2 -2mc^2Qv_2\d\rho = \epsilon \int Q v_2 \d\rho We can also start from the radial equations themselves to get the same result. If we start from the equations themselves (which is the most elementary approach), there are no boundary terms (because we didn't integrate by parts). We can separate the integrals according to the matrix elements that they contribute to: .. math:: \int PVv_1 \d\rho + \int -\hbar c Q'v_1 + \hbar c{\kappa\over\rho}Qv_1 \d\rho = \epsilon \int Pv_1 \d\rho \int \hbar c P'v_2 + \hbar c{\kappa\over\rho}Pv_2 + \int (V -2mc^2)Qv_2 \d\rho = \epsilon \int Q v_2 \d\rho To show that this problem generates a symmetric matrix, it is helpful to write the radial equations in the following form: .. math:: \hat H \ket{P, Q} = \epsilon \ket{P, Q} where: .. math:: \ket{P, Q} = \left(\begin{array}{c} P(\rho) \\ Q(\rho)\end{array}\right) \hat H = \left(\begin{array}{cc} V(\rho) & \hbar c \left(-{\d\over\d\rho}+{\kappa\over\rho}\right) \\ \hbar c \left({\d\over\d\rho}+{\kappa\over\rho}\right) & V(\rho) - 2mc^2 \\ \end{array}\right) the operator $\hat H$ is Hermitean ($\hat H^\dag = \hat H$), because $\left(-{\d\over\d\rho}\right)^\dag = {\d\over\d\rho}$: .. math:: \int f{\d\over\d\rho}g \d\rho = \int \left(-{\d\over\d\rho}\right)f g \d\rho and all the other quantities are just scalars. Stricly speaking, the exact Dirac notation (that is coordinate/representation independent) would be the following (notice the missing $\rho^2$ in the completeness relation, which is different to the radial Schrödinger equation): .. math:: \hat H \ket{P, Q} = \epsilon \ket{P, Q} \one = \int \d\rho \ket{\rho}\bra{\rho} \braket{\rho|\rho'} = \delta(\rho-\rho') \int \braket{\rho|\hat H|\rho'}\braket{\rho'|P, Q}\d\rho' = \epsilon \braket{\rho|P, Q} \braket{\rho|P, Q} = \left(\begin{array}{c} P(\rho) \\ Q(\rho)\end{array}\right) \braket{\rho|\hat H|\rho'} = \delta(\rho-\rho') \left(\begin{array}{cc} V(\rho) & \hbar c \left(-{\d\over\d\rho}+{\kappa\over\rho}\right) \\ \hbar c \left({\d\over\d\rho}+{\kappa\over\rho}\right) & V(\rho) - 2mc^2 \\ \end{array}\right) The normalization is: .. math:: \braket{P, Q| P, Q} = \int \d\rho \braket{P, Q|\rho}\braket{\rho|P, Q} = \int \d\rho (P^2+Q^2) = 1 The weak formulation is: .. math:: \braket{v|\hat H|P, Q} = \epsilon \braket{v|P, Q} where the test function $\ket{v}$ is one of: .. math:: \ket{v} = \begin{cases} \ket{v_1}\left(\begin{array}{c}1\\0\\\end{array}\right) \cr \ket{v_2}\left(\begin{array}{c}0\\1\\\end{array}\right) \cr \end{cases} The FE formulation is then obtained by expanding $\ket{P, Q} = \sum_k q_k \ket{k}$: .. math:: \sum_l \braket{k|\hat H|l}q_l = \epsilon \sum_l\braket{k|l}q_l The basis $\ket{k}$ can be for example the FE basis, some spline basis set, or gaussians. The basis has actually $2n$ base functions and it enumerates each equation like this: .. math:: \ket{k} = \begin{cases} \ket{i}\left(\begin{array}{c}1\\0\\\end{array}\right) & \mbox{for } i=k < n\cr \ket{i}\left(\begin{array}{c}0\\1\\\end{array}\right) & \mbox{for } i=k >= n\cr \end{cases} So at the end of the day, the $\braket{k|\hat H|l}$ matrix looks like this: .. math:: \braket{k|\hat H|l} = \left(\begin{array}{cc} \braket{i|V(r)|j} & \hbar c \braket{i|-{\d\over\d\rho}+{\kappa\over\rho}|j} \\ \hbar c \braket{i|{\d\over\d\rho}+{\kappa\over\rho}|j} & \braket{i|V(r) - 2mc^2|j} \\ \end{array}\right) The matrix is $2n \times 2n$, composed of those 4 matrices $n \times n$. The $\braket{k|l}$ matrix looks like this: .. math:: \braket{k|l} = \left(\begin{array}{cc} \braket{i|j} & 0 \\ 0 & \braket{i|j} \\ \end{array}\right) We can also write the matrix elements explicitly. Let $\ket{i} = B_i(\rho)$, then: .. math:: \braket{i|j} = \int B_i B_j \,\d\rho \braket{i|V|j} = \int B_i V B_j \,\d\rho \braket{i|V-2mc^2|j} = \int B_i (V-2mc^2) B_j \,\d\rho \hbar c \braket{i|{\d\over\d\rho}+{\kappa\over\rho}|j} = \hbar c\int B_i B_j' + B_i {\kappa\over\rho} B_j \,\d\rho \hbar c \braket{i|-{\d\over\d\rho}+{\kappa\over\rho}|j} = \hbar c\int -B_i B_j' + B_i {\kappa\over\rho} B_j \,\d\rho Other Forms of Dirac Equations ------------------------------ The radial Dirac equations are: .. math:: \hat H \ket{P, Q} = \epsilon \ket{P, Q} \ket{P, Q} = \left(\begin{array}{c} P(\rho) \\ Q(\rho)\end{array}\right) \hat H = \left(\begin{array}{cc} V(\rho) & \hbar c \left(-{\d\over\d\rho}+{\kappa\over\rho}\right) \\ \hbar c \left({\d\over\d\rho}+{\kappa\over\rho}\right) & V(\rho) - 2mc^2 \\ \end{array}\right) After substitution $S = f(r)P$ and $T = f(r)Q$, we get: .. math:: \hat H \ket{P, Q} = \epsilon \ket{P, Q} \hat H {1\over f} \ket{S, T} = \epsilon {1\over f}\ket{S, T} f\hat H {1\over f} \ket{S, T} = \epsilon \ket{S, T} where: .. math:: f\hat H {1\over f}= f\left(\begin{array}{cc} V(\rho) & \hbar c \left(-{\d\over\d\rho}+{\kappa\over\rho}\right) \\ \hbar c \left({\d\over\d\rho}+{\kappa\over\rho}\right) & V(\rho) - 2mc^2 \\ \end{array}\right){1\over f} = = \left(\begin{array}{cc} V(\rho) & \hbar c \left(-f{\d\over\d\rho}{1\over f}+{\kappa\over\rho}\right) \\ \hbar c \left(f{\d\over\d\rho}{1\over f}+{\kappa\over\rho}\right) & V(\rho) - 2mc^2 \\ \end{array}\right) and after using: .. math:: f{\d\over\d\rho}{1\over f} = {\d\over\d\rho} - {f'\over f} we get: .. math:: f\hat H {1\over f} = \left(\begin{array}{cc} V(\rho) & \hbar c \left(-{\d\over\d\rho}+{\kappa\over\rho}+{f'\over f}\right) \\ \hbar c \left({\d\over\d\rho}+{\kappa\over\rho}-{f'\over f}\right) & V(\rho) - 2mc^2 \\ \end{array}\right) Example I ~~~~~~~~~ In order to obtain equations for $g$ and $f$, related to $P$ and $Q$ by: .. math:: P = \rho g Q = \rho f so $f(r) = {1\over \rho}$ and .. math:: {f'\over f} = -{1\over \rho} and we get the radial Dirac equation for $g$ and $f$: .. math:: f\hat H {1\over f} = \left(\begin{array}{cc} V(\rho) & \hbar c \left(-{\d\over\d\rho}+{\kappa-1\over\rho}\right) \\ \hbar c \left({\d\over\d\rho}+{\kappa+1\over\rho}\right) & V(\rho) - 2mc^2 \\ \end{array}\right) Example II ~~~~~~~~~~ For $f(r) = \rho$ we get .. math:: {f'\over f} = {1\over \rho} and .. math:: f\hat H {1\over f} = \left(\begin{array}{cc} V(\rho) & \hbar c \left(-{\d\over\d\rho}+{\kappa+1\over\rho}\right) \\ \hbar c \left({\d\over\d\rho}+{\kappa-1\over\rho}\right) & V(\rho) - 2mc^2 \\ \end{array}\right) Example III ~~~~~~~~~~~ For $f(r) = \rho^n$ we get .. math:: {f'\over f} = {n\over \rho} and .. math:: f\hat H {1\over f} = \left(\begin{array}{cc} V(\rho) & \hbar c \left(-{\d\over\d\rho}+{\kappa+n\over\rho}\right) \\ \hbar c \left({\d\over\d\rho}+{\kappa-n\over\rho}\right) & V(\rho) - 2mc^2 \\ \end{array}\right) Example I is just a special case for $n=-1$, Example II for $n=1$. Example IV ~~~~~~~~~~ For $f(r) = \tanh \rho$ we get .. math:: {f'\over f} = {1\over \sinh\rho\cosh\rho} and .. math:: f\hat H {1\over f} = \left(\begin{array}{cc} V(\rho) & \hbar c \left(-{\d\over\d\rho}+{\kappa\over\rho}+{1\over \sinh\rho\cosh\rho}\right) \\ \hbar c \left({\d\over\d\rho}+{\kappa\over\rho}-{1\over \sinh\rho\cosh\rho}\right) & V(\rho) - 2mc^2 \\ \end{array}\right) Example V ~~~~~~~~~ For $f(r) = \tanh^n k\rho$ we get .. math:: {f'\over f} = {nk\over \sinh k\rho\cosh k\rho} and .. math:: f\hat H {1\over f} = \left(\begin{array}{cc} V(\rho) & \hbar c \left(-{\d\over\d\rho}+{\kappa\over\rho}+{nk\over \sinh k\rho\cosh k\rho}\right) \\ \hbar c \left({\d\over\d\rho}+{\kappa\over\rho}-{nk\over \sinh k\rho\cosh k\rho}\right) & V(\rho) - 2mc^2 \\ \end{array}\right) Example IV is just a special case for $n=1$, $k=1$. Asymptotic ---------- Schrödinger ~~~~~~~~~~~ The radial Schrödinger equation is: .. math:: P''(r) + 2\left(E-V(r)-{l(l+1)\over 2r^2}\right) P(r) = 0 Q(r) = P'(r) For $r\to\infty$, assuming $V(r)\to0$ we get: .. math:: P''(r) + 2E P(r) = 0 And the asymptotic is: .. math:: P(r) = e^{-\sqrt{-2E} r} Q(r) = P'(r) = -\sqrt{-2E} e^{-\sqrt{-2E} r} For $r\to0$ and assuming that $V(r)$ can be neglected compared to the ${l(l+1)\over 2r^2}$ term (for example $V(r) = -Z/r + O(1)$ is ok) we get: .. math:: P''(r) -{l(l+1)\over r^2} P(r) = 0 And the asymptotic is: .. math:: P(r) = r^{l+1} Q(r) = (l+1) r^l From the derivation this is valid for $l>0$, but it turns out to be valid also for $l=0$, because for $V(r) = -Z/r + O(1)$ the equations become: .. math:: P''(r) +{2Z\over r} P(r) = 0 the asymptotic of which is: .. math:: P(r) = r(1-Zr) P'(r) = 1-2Zr P''(r) = -2Z Which in the first order is just the above asymptotic for $l=0$: .. math:: P(r) = r Q(r) = 1 Note that $Z$ can be both positive and negative. Dirac ~~~~~ The Dirac equation is: .. math:: H = \left(\begin{array}{cc} V(r) + c^2 & c\left(-{\d\over\d r}+{\kappa\over r}\right) \\ c \left({\d\over\d r}+{\kappa\over r}\right) & V(r) - c^2 \\ \end{array}\right) H\left(\begin{array}{c} P(r) \\ Q(r) \\ \end{array}\right) = W\left(\begin{array}{c} P(r) \\ Q(r) \\ \end{array}\right) Where the relativistic energy $W = E + c^2$. In terms of the nonrelativistic energy it becomes: .. math:: H_{nonrel} = \left(\begin{array}{cc} V(r) & c\left(-{\d\over\d r}+{\kappa\over r}\right) \\ c \left({\d\over\d r}+{\kappa\over r}\right) & V(r) - 2c^2 \\ \end{array}\right) H_{nonrel}\left(\begin{array}{c} P(r) \\ Q(r) \\ \end{array}\right) = E\left(\begin{array}{c} P(r) \\ Q(r) \\ \end{array}\right) For $r\to\infty$, assuming $V(r)\to 0$ we get: .. math:: H = \left(\begin{array}{cc} c^2 & -c{\d\over\d r} \\ c {\d\over\d r} & - c^2 \\ \end{array}\right) and in terms of $P(r)$ and $Q(r)$: .. math:: c^2 P - c Q' = W P c P' - c^2 Q = W Q let's put the derivatives on the left hand side: .. math:: c P' = (W + c^2) Q c Q' = -(W - c^2) P write a second order equation: .. math:: c^2 P'' = (W + c^2) c Q' = - (W + c^2)(W - c^2) P = - (W^2 - c^4) P and finally we get: .. math:: P'' + {W^2 - c^4 \over c^2} P = 0 Q = {c\over W + c^2} P' The asymptotic is: .. math:: P(r) = e^{-\sqrt{c^4-W^2\over c^2} r} Q(r) = {c\over W + c^2} \left(-\sqrt{c^4-W^2\over c^2}\right) e^{-\sqrt{c^4-W^2\over c^2} r} = -\sqrt{c^2-W\over c^2+W} e^{-\sqrt{c^4-W^2\over c^2} r} We can also write it in terms of $E$: .. math:: P(r) = e^{-\sqrt{-2E-\left(E\over c\right)^2} r} Q(r) = -\sqrt{-{E\over E + 2c^2}} P(r) For $r\to 0$ we write the full equations: .. math:: (V+c^2) P - c Q' + c{\kappa\over r} Q = W P c P' + c{\kappa\over r} P + (V-c^2) Q = W Q Then we assume $P(r) = r^\beta$ and use the second equation to express $Q(r)$: .. math:: Q(r) = {c P' + c{\kappa\over r} P \over W - V + c^2} ={c \beta r^{\beta-1} + c{\kappa\over r} r^\beta \over W - V + c^2} =r^{\beta-1} {c(\beta + \kappa)\over W - V + c^2} We can always write any potential as $V(r) = -{Z(r)\over r}$ and we get: .. math:: Q(r) =r^{\beta-1} {c(\beta + \kappa)\over W + {Z(r)\over r} + c^2} =r^\beta {c(\beta + \kappa)\over Z(r) + (W + c^2)r} If $Z(r)\to Z$ as $r\to 0$ then the term $(W + c^2)r$ goes to zero and we get: .. math:: Q(r) =r^\beta {c(\beta + \kappa)\over Z} If $Z(r) \to Z_1 r$, then we get: .. math:: Q(r) =r^\beta {c(\beta + \kappa)\over Z_1 r + (W + c^2)r} =r^{\beta-1} {c(\beta + \kappa)\over Z_1 + W + c^2} If $Z(r) \sim r^3$ (harmonic oscillator) or $Z(r) \sim r^2$, then the $Z(r)$ term goes to zero and we get: .. math:: Q(r) =r^{\beta-1} {c(\beta + \kappa)\over W + c^2} In order to determine the constant $\beta$ for $Z\ne0$, we write the fraction $Q(r)\over P(r)$ in two ways: .. math:: {Q(r)\over P(r)} = {c(\beta+\kappa) \over Z} = {Z\over c(\kappa-\beta)} The second equation follows from first assuming $Q(r)=r^\beta$ and using the first Dirac equation to express $P(r)=r^\beta {c(\kappa-\beta) \over Z}$. Now we can express $\beta$ (we can assume $\beta > 0$): .. math:: {Z^2\over c^2} = \kappa^2 - \beta^2 \beta = \sqrt{\kappa^2 - \left(Z\over c\right)^2}