.. index:: Newtonian physics, classical mechanics =================== Classical Mechanics =================== Rigid Body Rotation =================== In all the sections below, the rigid body is rotating around the $\bomega$ axis, so: .. math:: {\bf v} = \bomega \times {\bf r} Kinetic Energy -------------- The kinetic energy is: .. math:: T = \int \half\rho({\bf r}) v^2 \d^3 r = = \int \half\rho({\bf r}) {\bf v}\cdot{\bf v} \d^3 r = = \int \half\rho({\bf r}) {\bf v}\cdot(\bomega \times {\bf r}) \d^3 r = = \int \half\rho({\bf r}) \bomega\cdot({\bf r}\times {\bf v}) \d^3 r = = \half \bomega \cdot \int\rho({\bf r}) ({\bf r}\times {\bf v}) \d^3 r = = \half \bomega \cdot {\bf L} where ${\bf L}$ is the total angular momentum: .. math:: {\bf L} = \int\rho({\bf r}) ({\bf r}\times {\bf v}) \d^3 r Angular Momentum ---------------- Total angular momentum is: .. math:: {\bf L} = \int \rho({\bf r}) ({\bf r} \times {\bf v}) \d^3 r = = \int \rho({\bf r}) ({\bf r} \times (\bomega \times {\bf r})) \d^3 r= = \int \rho({\bf r}) (\bomega r^2 - {\bf r} ({\bf r} \cdot \bomega)) \d^3 r = = \int \rho({\bf r}) (\one r^2 - {\bf r} {\bf r}) \d^3 r \cdot \bomega = = {\bf I} \cdot \bomega Where ${\bf I}$ is the moment of inertia tensor: .. math:: {\bf I} = \int \rho({\bf r}) (\one r^2 - {\bf r} {\bf r}) \d^3 r Moment of Inertia ----------------- The moment of inertia tensor and its components are: .. math:: {\bf I} = \int \rho({\bf r}) (\one r^2 - {\bf r} {\bf r}) \d^3 r I^{ij} = \int \rho({\bf r}) (\delta^{ij} r_k r^k - r^i r^j) \d^3 r Let's write $\bomega=\omega {\bf n}$ (where ${\bf n}$ is a unit vector), then the kinetic energy is: .. math:: T = \half \bomega \cdot {\bf L} = \half \bomega \cdot {\bf I} \cdot \bomega = \half {\bf n} \cdot {\bf I} \cdot {\bf n}\, \omega^2 = \half I \omega^2 where $I$ is the moment of inertia about the axis of rotation: .. math:: I = {\bf n} \cdot {\bf I} \cdot {\bf n} = = {\bf n} \cdot \int \rho({\bf r}) (\one r^2 - {\bf r} {\bf r}) \d^3 r \cdot {\bf n} = = \int \rho({\bf r}) (r^2 - ({\bf r}\cdot {\bf n})^2) \d^3 r Cylinder ^^^^^^^^ Solid cylinder of radius $R$, height $h$ and mass $m$. We'll use cylindrical coordinates. First for rotation about the $z$ axis: .. math:: V = \pi R^2 h {\bf n} = (0, 0, 1) {\bf r} = (\rho\cos\phi, \rho\sin\phi, z) {\bf r} \cdot {\bf n} = z r^2 = \rho^2 + z^2 I = \int \rho({\bf r}) (r^2 - ({\bf r}\cdot {\bf n})^2) \d^3 r = \int {m\over V} (\rho^2+z^2 - z^2) \d^3 r = = \int {m\over V} \rho^2 \d^3 r = {m\over V} \int_0^{2\pi}\d\phi \int_0^R\d R \int_{-{h\over2}}^{h\over2} \d z \rho^2 \rho = = {m\over V} 2\pi {R^4\over 4} h = {m\over \pi R^2 h} 2\pi {R^4\over 4} h = \half m R^2 Code:: >>> from sympy import var, integrate, pi >>> var("m V R rho z phi h") (m, V, R, rho, z, phi, h) >>> I = m/V * integrate(rho**2 * rho, (rho, 0, R), (phi, 0, 2*pi), (z, -h/2, h/2)) >>> I.subs(V, pi * R**2 * h) R**2*m/2 And about the $x$ axis: .. math:: {\bf n} = (1, 0, 0) {\bf r} = (\rho\cos\phi, \rho\sin\phi, z) {\bf r} \cdot {\bf n} = \rho\cos\phi r^2 = \rho^2 + z^2 I = \int \rho({\bf r}) (r^2 - ({\bf r}\cdot {\bf n})^2) \d^3 r = \int {m\over V} (\rho^2+z^2 - \rho^2\cos^2\phi) \d^3 r = = {m\over V} \int_0^{2\pi}\d\phi \int_0^R\d R \int_{-{h\over2}}^{h\over2} \d z (\rho^2+z^2 - \rho^2\cos^2\phi)\rho = = {m\over V}\left({\pi R^4 h\over 2}+{\pi R^2 h^3\over 12} -{\pi R^4 h\over 4}\right) = = {m\over \pi R^2 h}\left({\pi R^4 h\over 2}+{\pi R^2 h^3\over 12} -{\pi R^4 h\over 4}\right) = = {m\over 12} (6R^2 + h^2 - 3R^2) = = {m\over 12} (3R^2 + h^2) Code:: >>> from sympy import var, integrate, pi, cos >>> var("m V R rho z phi h") (m, V, R, rho, z, phi, h) >>> I = m/V * integrate((rho**2+z**2-rho**2*cos(phi)**2) * rho, (rho, 0, R), (phi, 0, 2*pi), (z, -h/2, h/2)) >>> I.subs(V, pi * R**2 * h).simplify() m*(3*R**2 + h**2)/12 Special cases are a rod of length $h$ (set $R=0$ above) and a thin solid disk of radius $R$ and mass $m$ (set $h=0$ above). Sphere ^^^^^^ Solid sphere of radius $R$ and mass $m$. We'll use spherical coordinates. All axes are equivalent, so we use rotation about the $z$ axis: .. math:: V = {4\over3} \pi R^3 {\bf n} = (0, 0, 1) {\bf r} = (\rho\cos\phi\sin\theta, \rho\sin\phi\sin\theta, \rho\cos\theta) {\bf r} \cdot {\bf n} = \rho\cos\theta r^2 = \rho^2 I = \int \rho({\bf r}) (r^2 - ({\bf r}\cdot {\bf n})^2) \d^3 r = \int {m\over V} (\rho^2 - \rho^2\cos^2\theta) \d^3 r = = {m\over V} \int_0^{2\pi}\d\phi \int_0^R\d R \int_0^\pi \d \theta \rho^2(1-\cos^2\theta) \rho^2\sin\theta = = {m\over V} \int_0^{2\pi}\d\phi \int_0^R\d R \int_0^\pi \d \theta \rho^4\sin^3\theta = = {m\over V} 2\pi {R^5\over 5} {4\over 3} = = {m\over V} {8\over 15}\pi R^5 = {m\over {4\over 3}\pi R^3} {8\over 15}\pi R^5 = {2\over 5} m R^2 Code:: >>> from sympy import var, integrate, pi, sin >>> var("m V R rho theta phi") (m, V, R, rho, theta, phi) >>> I = m/V * integrate(rho**4 * sin(theta)**3, (rho, 0, R), (phi, 0, 2*pi), (theta, 0, pi)) >>> I 8*pi*R**5*m/(15*V) >>> I.subs(V, 4*pi*R**3/3) 2*R**2*m/5